Posts

DOWNLOAD AND INSTALL WINDOWS MOVIE MAKER

Image

A Simple WIn32 Calculator(GUI) (collected)

Image
First  Add this linker option: -lgdi32See the animation below: Click here to view te code.

BOUNCING STAR!!! (COMPLETED!!)

Image
SCREENCASTING:
Code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40#include <stdio.h>#include <windows.h>#include <math.h>voidh_newl(int h){ while(h--){ printf("\n"); } } voidstars(){ printf("*\n"); } intmain(){ int c; printf("Number of drops: "); scanf("%d",&c); while(c--){ int x; float t; /* drop down */for ( x=1; x<=11; ++x){ t= 700*(sqrt (2*x/9.8) - sqrt (2*(x-1)/9.8)); Sleep((int)t); system("cls"); h_newl(x-1); stars(); } /* drop up */for ( x=11; x>=1; --x){ t= 700*(sqrt (2*x/9.8) - sqrt (2*(x-1)/9.8)); if(x!=11)Sleep(t); system("cls"); h_newl(x-1); stars(); } } return0; }

UVa problem-12577 (Solved)

Image
body, html { margin:0; padding:0; color:#333; background:#fff; font-family:Verdana,Helvetica,Arial,sans-serif; } input { margin:.5em 0; } #container { width:750px; margin:1em auto; } #container > div { margin:auto 1em; } #code { float:left; width:50%; } #html { float:right; width:50%; } #code2 { margin-right:1em; } #html2 { margin-left:1em; } #main textarea { width:100%; height:10em; } #html2 textarea { float:right; } #options { clear:both; } #divstyles { width:50%; } #preview { padding-bottom: 3em; } #footer { border-top:1px dotted #000; } #footer p { text-align:center; font-size:75%; …

UVa problem-100(Solved)

The 3n + 1 problem
The 3n + 1 problemBackground Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs. The Problem Consider the following algorithm: 1. input n 2. print n 3. if n = 1 then STOP 4. if n is odd then
n=3*n+1 5. else
n=n/2 6. GOTO 2 Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.) Given an input n, it is possible to determine the number of n…

how to reset or restart audio / kazam audio pitch or tone or scale or bitrate change fix

pulseaudio -k && sudo alsa force-reload